Tuesday, May 18, 2021
10:00 – 11:00 EST / 16:00 – 17:00 CET
Register here: https://zoom.us/webinar/register/WN_FqXntfoBRKimUYeGCbhkGA
Presented by: Giel Hendriks, CEO, Toxys
Every year, large numbers of new compounds are being developed for a wide range of purposes. Due to the large numbers of compounds that require safety assessment, there is an increasing demand for rapid and reliable in vitro assays that assess their toxicity in an early phase of drug or product development. At the same time, there is a strong demand to reduce animal testing. We have therefore developed various in vitro cell-based assays for chemical safety assessment with the focus on understanding the mode-of-action (MoA) of toxic compounds.
ToxTracker is a unique stem cell-based reporter assay for reliable genotoxicity and carcinogenicity hazard identification. The ToxTracker assay reliably identifies genotoxic compounds and provides insight into their mode-of-action. The assay is able to discriminate between direct DNA reactivity and indirect genotoxicity related to oxidative stress or protein damage and can differentiate between genotoxic compounds with a clastogenic or aneugenic MoA. Various extensions of ToxTracker to further investigate the MoA of genotoxic compounds are combined in the ToxTracker suite.
ToxProfiler is a human cell reporter assay that can accurately quantify the cellular stress responses that are induced by chemicals. The unique combination of seven fluorescent reporter cell lines for oxidative stress, genetic stress, ER stress, autophagy, ion stress, protein stress and inflammation and automated live-cell confocal microscopy are applied to generate a toxicological fingerprint and provide insight into the toxic MoA of compounds.
These unique animal-free in vitro assays provide reliable and accurate toxicity information that is relevant to human health. The assays are used for early compound screening, follow-up testing and MoA assessment, potency ranking and chemical read-across and are particularly useful in weight-of-evidence (WoE) and adverse outcome pathway (AOP) approaches for chemical safety assessment.